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Abstract—We present our solution for the IEEE Signal Pro-
cessing Cup 2021 challenge. The goal is to maximize the weighted
average achievable rate for a set of Nu = 50 users assisted by
an intelligent reflecting surface (IRS). We combined a modified
least-squares smoothing estimator, several variations over the
strongest-tap maximization (STM) algorithm, and a final fine-
tuning optimization that explored solutions in the vicinity of the
STM solutions. Simulations show that our IRS configurations
yield an estimated weighted achievable rate slightly over 117
Mbps.

I. INTRODUCTION

The increasing number of devices and connections by the
year of 2022 [1] combined with increasingly demanding
requirements on the emerging future wireless networks (5-
th generation (5G) [2] or 6-th generation (6G) [3]) have
focused the attention on energy consumption [4]. Massive
multiple-input multiple-output (MIMO) has been established
as the key technology for improving spectral efficiency in
these emerging networks [5]. Hence, finding energy-efficient
hardware solutions to enhance the networks performance
has become one of the crucial tasks for the upcoming new
generations.

Among all the proposed technologies, the intelligent re-
flecting surfaces (IRSs) [6–8] have been proposed to achieve
the above described goals. An IRS is a (nearly) passive two-
dimensional meta-surface composed of elements that can be
controlled with integrated electronic to modify their reflection
coefficient [9]. This technology is energy-efficient thanks to
the possibility of re-radiating the incoming signal without
using any power amplifier. Instead, this requires to design
properly the phase shifts applied by each reflective element,
in order to constructively combine all the reflected signals.

This motivated the topic of the eighth edition of the IEEE
Signal Processing Cup [10]: control a wireless propagation
environment using an IRS deployed at a fixed location with
the goal of assisting the communication between a base
station and a set of Nu = 50 users. The IEEE Signal
Processing Cup is a yearly competition organized by the IEEE
Signal Processing society. In this competition, undergraduate
students form teams to work on real-life challenges. Each
team should include one faculty member as an advisor, at most
one graduate student as a mentor, and up to ten undergraduate
students.

In this article, we describe the problem proposed in the
competition, and the solution proposal made by our team,
hUMAns at RISk.

Notation: Throughout the document, lower-case bold letters
denote vectors, and overline lower-case bold letters denote
frequency-domain vectors; 111 is the all-one vector; (·)T and
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Fig. 1. System model with an IRS of 64x64 elements. The controller
configures each element of the IRS in one of two states: θn = ±1.

(·)H denote the transpose and Hermitian transpose operations,
respectively; � denotes the Hadamard product;‖·‖1 is the L1

norm.

II. SYSTEM MODEL

The IRS consists of N = 4096 elements, distributed as
a 64 × 64 array, where each of which can adjust its phase
selecting from two possible states whose phase difference is
equal to π. Hence, a total of 24096 possible configurations
can be chosen. Transmission is designed using orthogonal
frequency division multiplexing (OFDM), so that data for each
user are allocated on a set of K = 500 subcarriers spread over
a bandwidth B = 10 MHz. Assuming that a cyclic extension
longer than the channel impulse response (CIR) is used, i.e.,
M = 20 channel taps for the equivalent CIR, a frequency
domain equivalent model can be used to describe the system
response, as:

z = hθ � x + w, (1)

where all frequency-domain vectors in (1) are of length K,
z is the received signal, hθ is the IRS-dependent channel
frequency response, and w represents the noise.

The end-to-end channel frequency response, whose expres-
sion in the time-domain is hθ(t), can be defined as follows:

hθ(t) = hd(t) +

N∑
n=1

(
bn ∗ ϑn;θn ∗ an

)
(t). (2)

This expression results from the combination of the multiple
channels over which the transmitted signal, x(t), is propagated
from the base station (BS) until it reaches the legitimate
user, see Fig. 1. The signal from the BS is propagated over
a linear time-invariant (LTI) channel with impulse response
an(t) to the IRS. The IRS is reconfigurable with an external
stimulus, θn, being its behaviour defined by an LTI filter



with the impulse response defined by ϑn;θn(t). Each element
of the IRS modifies the phase of the impinging signal and
propagates it over an LTI channel with impulse response
bn(t). In addition, there are paths that are not propagated
over the IRS, therefore out of control, that constitute the
uncontrollable channel, hd(t).

The per-user signal-to-noise ratio (SNR) is given by
P |h̄(u)

θ [ν]|2/BN0, where h̄(u)
θ [ν] is the IRS-dependent chan-

nel frequency response for each user u ∈ {1, ..., Nu}. For
each of these users, u, the achievable data rate that we aim
to maximize can be computed as:

Ru = B
K+M−1

K−1∑
ν=0

log2

(
1 +

P
∣∣∣h̄(u)

θ [ν]
∣∣∣2

BN0

)
, (3)

where P = 1 W is the transmit power and N0 is the noise
power spectral density. Note that this expression is a summa-
tion over the K subcarriers with a cyclic prefix compensation
K +M − 1. In order to compensate the lower rates in the
non-line-of-sight (NLOS) users, the final achievable data rate
is computed as a weighted average rate:

R = 1
Nu

Nu∑
u=1

αuRu, (4)

where αu = {1, 2} for LOS/NLOS (Line-of-sight/non-line-
of-sight) users, respectively.

The goal of the competition is to design an algorithm that
selects a good IRS configuration based on measurements made
at the user location [10]. To this end there are two available
data sets. The first one, dataset1, contains the received signal
during a training phase using a known pilot sequence over 4N
configurations of the IRS focused on a single user. The second
one, dataset2, contains the received signals for the 50 users
for which N possible IRS configurations are used during a
training phase using a given pilot sequence.

Besides other tasks such as estimating the noise power
density, and determining (if possible) which users are
LOS/NLOS, the key problems to be solved are: (i) channel
estimation, and (ii) IRS optimization.

III. ALGORITHMS

A. Noise and channel estimation

In order to maximize the individual rates for each user
according to (3), i.e., finding the optimal IRS configuration
that maximizes such rates, we need to know first the noise
power density, and also estimate the N + 1 channels involved
in the communication.

First, noise power is estimated by taking advantage of the
extended data set available for a toy user (i.e., dataset1). Since
there are 4N IRS configurations available, and some of them
are repeated, combining two of the received signals under
a constant lay-out (IRS configuration and assuming static
channels) is enough to obtain a good noise estimate:

N0 = var

{
zi − zj√

2

}
(5)

which is computed for each pair {i, j} of identical configu-
rations in dataset1.

Next, the CIR needs to be estimated. This involves esti-
mating the composite channels between the transmitter and

receiver through each of the N IRS elements, plus the direct
channel between the transmitter and the receiver. Since in the
available data set for the Nu users (i.e., dataset2) the pilot
transmission consisted of only N different configurations, this
is not enough for directly using least squares (LS) estimation,
and a different approach had to be taken to estimate the direct
channel.

Formally, the direct channel can be assimilated as an
additional IRS element whose configuration does not change.
Then, the channel impulse response can be expressed as
follows:

hθ = hd + V Tωθ =
[
hd V T

] [
1
ωθ

]
(6)

where the N ×M matrix V includes the contribution of the
transmitter-IRS and the IRS-receiver channels, and ωθ is an
N × 1 vector including the phase response for each element.
Note that both hθ and hd are vectors of size M , i.e., the
number of taps for the CIR. Hence, the received signal for
the i-th configuration used during the training phase can be
expressed as:

zi = XFhθi = XF
[
hd V T

] [ 1
ωθi

]
(7)

where X is the K × K diagonal matrix with [X]k,k being
the symbol transmitted in the k-th carrier; and F is the
K×M discrete Fourier transform (DFT) matrix of K points,
and where we neglected the noise term for the sake of
compactness.

Now, since the configuration matrix is a Hadamard matrix,
then all configurations are orthogonal. Then, it can be proved
that the product of the first row, which is the configuration of
the first element in the IRS, with the other rows results in a
row vector where all its elements but the first one are zero:

P 1 =
[
N 0 . . . 0

]
(8)

where P is the N ×N pilot matrix and 111 has dimension N ,
which corresponds to the configuration of the first element.
This property can be applied to the matrix Z = [z1 . . . zN ] in
the same fashion:

Z 1 = XF
[
hd V

T
] [

1T

P

]
1 = XF (Nhd +Nv1)

(9)
Unfortunately, the configuration of the first element collides
with the one considered for the direct channel. To overcome
this, we assume that the contribution of the direct channel
is considerably greater than the one of the first element.
Hence, the impulse response of the former can be estimated
through (9). This estimation has proved to be good enough
when evaluated in dataset1, where, as there are 4N pilot
transmissions, an LS estimation could be performed for the
N IRS channels and the direct channel.

For the other N -1 IRS channels, leaving out the first one,
an LS estimation was performed, which was followed by a
smoothing procedure over the pilots dimension in order to
further reduce the noise in the estimation. As for the channel
of the first element, we considered it to be equal to the one of



an adjacent element, namely the 65-th element. Once again,
this proved to be suitable when evaluated with dataset11.

B. STM

After obtaining an accurate channel estimation, the next
step is to optimize the IRS for achieving the higher average
rate possible. Therefore, the goal is to find the ωθ matrix that
maximizes (3), which can be re-expressed as:

Ru = B
K+M−1

K−1∑
ν=0

log2

(
1 +

P |fH
ν hd+fH

ν V
Tωθ|2

BN0

)
, (10)

where fν is the ν-th row of the DFT matrix F . Note that
hd and V now correspond to the channel estimates obtained
in the previous subsection, although we decided to keep this
notation for the sake of simplicity.

An upper bound for the achievable rate in (10) is achieved
in the unrealistic case in which the state of the elements would
be selected to get all the subcarriers aligned in phase at the
receiver. In this case the rate would be:

RUB
u = B

K+M−1

K−1∑
ν=0

log2

(
1 +

P
(
|fH
ν hd|+‖fH

ν V
T‖

1

)2

BN0

)
,

(11)
The first approach to optimize the IRS has been done using

the strongest-tap maximization (STM) [11]. As explained in
[12], the intuition behind this technique is that it is easier
to optimize the equivalent channel in time rather than the
channel in frequency considering M � K. In order to select
the tap to be maximized, we first calculate which one could
be potentially larger. This is implemented by:

lopt = argmax
l=0...M−1

∣∣∣∣|hd[l]|+ M∑
m=1

|vm[l]|
∣∣∣∣2 (12)

For maximizing the lopt-th tap, we need to shift the phase
from the channel of each IRS element so that all channels
are in phase at the receiver. As the direct channel is the
uncontrollable element, the channel from all the elements
must be aligned to it:

ϕn = −∠vn[lopt] + ∠hd[l
opt] (13)

This expression must be adapted to our particular set-up,
as it is only possible to select between two phase shifts.
Therefore, the final state is:

θn =

{
1, if − π/2 < ϕn < <π/2
−1, otherwise (14)

One of the main disadvantages of this approach is that
in NLOS channels there is no dominant tap. Hence, the
expected performance in this type of scenario would be worse.
Moreover, the reduced number of states of our particular
problem is a handicap for achieving the maximum rate that
potentially the STM would obtain for a particular tap. This
might cause that for some users, it is possible to obtain a
higher rate by maximizing a different tap instead of the one
obtained in (12). Hence, we implemented a variation of STM

1In a first step, we neglected the direct link and performed an initial
estimation for the channels. This was used to determine whether the IRS
structure was square (i.e. 64× 64 or rectangular), by calculating the spatial
correlation matrix for the IRS elements.

that aims at maximizing not the largest, but the kl-th largest
channel tap. The configuration that obtains the higher rate for
that user would be the output of the algorithm. We refer to
this algorithm as STM-k, and includes STM as a special case.

We also observed that the equivalent channel for some line-
of-sight (LOS) users, (e.g., user 9), after applying STM-k has
two main taps larger than the rest. When these two dominant
taps are not correctly aligned in phase, it could lead to a very
frequency-selective channel (i.e., as in a two-ray channel).
A possible solution for this type of users is to modify the
expression from (13) to consider both paths:

ϕn = −∠vn[lopt]+f(∠hd[l
opt
1 ,∠hd[l

opt
2 ], ..∠hd[l

opt
Kl

]]) (15)

where f(·) is a linear function that combines the phases of the
most important taps. We refer to this last algorithm as gener-
alized STM-k. Because of the strong phase quantization at the
IRS, this function has been developed heuristically, selecting
for each result the function with the best performance. For
example, for the aforementioned user 9, we used the function:

f(∠hd[l
opt
1 ],∠hd[l

opt
2 ]) = ∠hd[l

opt
1 ] + ∠hd[l

opt
2 ] (16)

C. Fine tuning

As a final step, we aim to improve the solution for the
IRS configuration ωθ obtained from the generalized STM-k
solution. For this purpose, we try to optimize the ωθ matrix by
searching locally new solutions that improve the previous one.
In this way, it is intended to simplify the problem, by reducing
the dimension of the matrix, and, therefore, to accelerate the
optimization process.

We use the patternsearch numerical optimization method
in MATLAB [13] to obtain the maximization of the objective
function (10). The possible values of the IRS matrix are
restricted in the proposed problem statement, but in order to
find a solution we proceed as in [14]. We relax the constraint
so that −1 ≤ θn ≤ 1 and then discretize the solution to fit
the original constraints.

The local solution is based on a clustering method in which
we iterate over m×n sub-matrices of ωθ finding combinations
that improve the global metric in (4) by simply changing some
values in that sub-matrix and leaving the rest of the matrix
ωθ unchanged. In addition, we introduce a 50 % overlap over
the different clusters to improve the result. Although different
combinations of m and n have been tried, the best solution
has been found for m = n = 8.

Finally, to consider the local convergence of the optimiza-
tion method, patternsearch, it is decided to run the program
several times and retain the best solution of the iterations by
changing the initial generalized STM-k solution. Specifically,
we tested multiple variations over the generalized STM-k with
different linear combinations of the strongest taps that improve
the rate on certain users.

IV. NUMERICAL RESULTS

In this section we study the performance of the two main
tasks of the challenge proposed in the SP Cup: the channel
estimation and the IRS optimization. First, for the analysis of
the channel estimation performance, we considered the one
using the 4N pilot signal from the dataset1 as ground truth.
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Fig. 2. Comparison of the channel estimation for a given RIS configuration
between the ground truth, the stat-of-art algorithm and the proposed estimator.

In Fig. 2, we show a comparison between such ground
truth reference and the estimation obtained with the proposed
algorithm. Moreover, the channel estimation obtained using
the algorithm proposed in [12] is also used as a reference,
which is referred to as the state-of-art estimator. It is possible
to visually observe that our implementation outperforms the
estimator initially proposed.

In the IRS optimization, the figure of merit for this chal-
lenge has been to achieve the highest averaged binary rate
following the expression (3), but considering the double of
the rate for the NLOS users.

In Fig. 3, we represent the normalized achievable rate
obtained when using each of the previously described algo-
rithms. We see that the STM alone does not provide the best
possible rate, and that the different variations over the STM
algorithm provide reasonable rate improvements for specific
users. We also see that the fine-tuning algorithm also allows
for a final rate boost over some users, especially for those far
from the achievable upper bound rate.

In Fig. 3, it is possible to distinguish between two level of
performances. Indeed, the users with the lowest normalized
rate are those which are NLOS. The reason for this is that
the STM, as it tries to improve just a single tap of hθ, has
a poor performance for this type of channels. This behaviour
is explained in detail in [12].

V. CONCLUSION

We presented the set of algorithms that we implemented for
the IEEE Signal Processing Cup 2021 challenge. A combina-
tion of modified versions of several state-of-the-art algorithms
has allowed us to improve the performance obtained with
the baseline STM method. The estimated average achievable
rate with this solution is R ≈ 117.5879 Mbps. This solution
achieved the ninth place out of a total of 30 final submissions,
where the first place (University of Science and Technology,
Kraków, Poland), obtained an average rate only a 0.6% higher
than ours.
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